Skip to main content
Public content shared with everyone by Ingrid Tomac

Force_Calculation_Turbulence.m (8298 bytes)

clear

clc

format compact



%% Force Calculation Information:

% Force due to local turbulence:

% Ft = 4/3*pi*Rp^3*delrho*bm

% bm = 1.9*epsilon^(2/3)/(r^1/3)

    % Rp is particle radius

    % delrho is density difference between particle and water

    % bm is acceleration due to local turbulence

    % epsilon is fluid energy dissipation per unit volume

    % r is vortex radius, taken as bubble diameter



%% Fundamental Input Parameters:

rhow = 1000;  %unit: kg/m3

rhop = 2600;  %unit: kg/m3

rhodiff = rhop-rhow; 



%% To get Local Turbulence force:

syms Db



%------------------1) x-axis: bubble diameter

%---------------------fixed particle diameter, varying dissipation

Dp = 0.00015;

ep1 = 1;

ep2 = 50;

ep3 = 100;



bm1 = 1.9*(ep1)^(2/3)/(Db^(1/3));

Ft_bm1 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm1;

bm2 = 1.9*(ep2)^(2/3)/(Db^(1/3));

Ft_bm2 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm2;

bm3 = 1.9*(ep3)^(2/3)/(Db^(1/3));

Ft_bm3 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm3;



% % % figure(1)

% % % fplot(1000*Db, Ft_bm1, [0   0.005],'k')

% % % hold on

% % % fplot(1000*Db, Ft_bm2, [0   0.005],'b')

% % % fplot(1000*Db, Ft_bm3, [0   0.005],'r')

% % % legend('D_p=0.15 mm, \epsilon = 1 kW/m^3', ...

% % %     'D_p=0.15 mm, \epsilon = 50 kW/m^3', ...

% % %     'D_p=0.15 mm, \epsilon = 100 kW/m^3')

% % % xlabel('Center Bubble Diameter,D_b (mm)')

% % % ylabel('Local Turbulence Force,F_t (N)')

% % % set(gca,'box','off');

% % % set(gca,'TickDir','out');

% % % set(gca,'YScale','log');

% % % legend('boxoff');



%------------------2) x-axis: bubble diameter

%---------------------fixed dissipation, varying particle diameter

Dp1 = 0.00015;

Dp2 = 0.00027;

Dp3 = 0.00133;



bm4 = 1.9*(ep1)^(2/3)/(Db^(1/3));

Ft_bm4 = (4*3)*pi*(Dp1/2)^3*(rhodiff)*bm4;

bm5 = 1.9*(ep1)^(2/3)/(Db^(1/3));

Ft_bm5 = (4*3)*pi*(Dp2/2)^3*(rhodiff)*bm5;

bm6 = 1.9*(ep1)^(2/3)/(Db^(1/3));

Ft_bm6 = (4*3)*pi*(Dp3/2)^3*(rhodiff)*bm6;



figure(2)

fplot(1000*Db, 1000*Ft_bm4, [0   0.005],'k','LineWidth',2)

hold on

fplot(1000*Db, 1000*Ft_bm5, [0   0.005],'--k','LineWidth',2)

fplot(1000*Db, 1000*Ft_bm6, [0   0.005],':k','LineWidth',2)

legend(' D_p=0.15 mm, \epsilon = 1 kW/m^3', ...

    ' D_p=0.27 mm, \epsilon = 1 kW/m^3', ...

    ' D_p=1.33 mm, \epsilon = 1 kW/m^3')

xlabel('Center Bubble Diameter,D_b (mm)')

ylabel('Local Turbulence Force,F_t (mN)')

set(gca,'box','off');

set(gca,'TickDir','out');

set(gca,'YScale','log');

set(gca,'FontName','calibri','FontSize',23)

set(gca,'LineWidth',2)

legend('boxoff');



%------------------3) x-axis: particle diameter

%---------------------fixed dissipation, varying bubble diameter

syms Dp

Db_1 = 0.0005;

Db_2 = 0.0025;

Db_3 = 0.005;



bm7 = 1.9*(ep1)^(2/3)/(Db_1^(1/3));

Ft_bm7 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm7;

bm8 = 1.9*(ep1)^(2/3)/(Db_2^(1/3));

Ft_bm8 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm8;

bm9 = 1.9*(ep1)^(2/3)/(Db_3^(1/3));

Ft_bm9 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm9;



figure(3)

fplot(1000*Dp, 1000*Ft_bm7, [0   0.002],'k','LineWidth',2)

hold on

fplot(1000*Dp, 1000*Ft_bm8, [0   0.002],'--k','LineWidth',2)

fplot(1000*Dp, 1000*Ft_bm9, [0   0.002],':k','LineWidth',2)

legend(' D_b=0.5 mm, \epsilon = 1 kW/m^3', ...

    ' D_b=2.5 mm, \epsilon = 1 kW/m^3', ...

    ' D_b=5 mm, \epsilon = 1 kW/m^3')

xlabel('Sand Particle Diameter,D_p (mm)')

ylabel('Local Turbulence Force,F_t (mN)')

set(gca,'box','off');

set(gca,'TickDir','out');

set(gca,'YScale','log');

set(gca,'FontName','calibri','FontSize',23)

set(gca,'LineWidth',2)

legend('boxoff');



%------------------4) x-axis: particle diameter

%---------------------fixed bubble diameter, varying dissipation



bm10 = 1.9*(ep1)^(2/3)/(Db_2^(1/3));

Ft_bm10 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm10;

bm11 = 1.9*(ep2)^(2/3)/(Db_2^(1/3));

Ft_bm11 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm11;

bm12 = 1.9*(ep3)^(2/3)/(Db_2^(1/3));

Ft_bm12 = (4*3)*pi*(Dp/2)^3*(rhodiff)*bm12;



% % % figure(4)

% % % fplot(1000*Dp, Ft_bm10, [0   0.002],'k')

% % % hold on

% % % fplot(1000*Dp, Ft_bm11, [0   0.002],'b')

% % % fplot(1000*Dp, Ft_bm12, [0   0.002],'r')

% % % legend('D_b=2 mm, \epsilon = 1 kW/m^3', ...

% % %     'D_b=2 mm, \epsilon = 50 kW/m^3', ...

% % %     'D_b=2 mm, \epsilon = 100 kW/m^3')

% % % xlabel('Sand Particle Diameter,D_p (mm)')

% % % ylabel('Local Turbulence Force,F_t (N)')

% % % set(gca,'box','off');

% % % set(gca,'TickDir','out');

% % % set(gca,'YScale','log');

% % % legend('boxoff');



%------------------5) x-axis: dissipation

%---------------------fixed bubble diameter, varying particle diameter

syms ep



bm13 = 1.9*(ep)^(2/3)/(Db_2^(1/3));

Ft_bm13 = (4*3)*pi*(Dp1/2)^3*(rhodiff)*bm13;

bm14 = 1.9*(ep)^(2/3)/(Db_2^(1/3));

Ft_bm14 = (4*3)*pi*(Dp2/2)^3*(rhodiff)*bm14;

bm15 = 1.9*(ep)^(2/3)/(Db_2^(1/3));

Ft_bm15 = (4*3)*pi*(Dp3/2)^3*(rhodiff)*bm15;



figure(5)

fplot(ep, 1000*Ft_bm13, [1   100],'k','LineWidth',2)

hold on

fplot(ep, 1000*Ft_bm14, [1   100],'--k','LineWidth',2)

fplot(ep, 1000*Ft_bm15, [1   100],':k','LineWidth',2)

legend(' D_b=2.5 mm, D_p=0.15 mm', ...

    ' D_b=2.5 mm, D_p=0.27 mm', ...

    ' D_b=2.5 mm, D_p=1.33 mm')

xlabel('Fluid Energy Dissipation,\epsilon (kW/m^3)')

ylabel('Local Turbulence Force,F_t (mN)')

set(gca,'box','off');

set(gca,'TickDir','out');

set(gca,'YScale','log');

set(gca,'FontName','calibri','FontSize',23)

set(gca,'LineWidth',2)

legend('boxoff');



%------------------6) x-axis: dissipation

%---------------------fixed particle diameter, varying bubble diameter



% % % bm16 = 1.9*(ep)^(2/3)/(Db_1^(1/3));

% % % Ft_bm16 = (4*3)*pi*(Dp1/2)^3*(rhodiff)*bm16;

% % % bm17 = 1.9*(ep)^(2/3)/(Db_2^(1/3));

% % % Ft_bm17 = (4*3)*pi*(Dp1/2)^3*(rhodiff)*bm17;

% % % bm18 = 1.9*(ep)^(2/3)/(Db_3^(1/3));

% % % Ft_bm18 = (4*3)*pi*(Dp1/2)^3*(rhodiff)*bm18;

% % % 

% % % figure(6)

% % % fplot(ep, Ft_bm16, [1   100],'k')

% % % hold on

% % % fplot(ep, Ft_bm17, [1   100],'b')

% % % fplot(ep, Ft_bm18, [1   100],'r')

% % % legend('D_b=0.5 mm, D_p=0.15 mm', ...

% % %     'D_b=2.5 mm, D_p=0.15 mm', ...

% % %     'D_b=5 mm, D_p=0.15 mm')

% % % xlabel('Fluid Energy Dissipation,\epsilon (kW/m^3)')

% % % ylabel('Local Turbulence Force,F_t (N)')

% % % set(gca,'box','off');

% % % set(gca,'TickDir','out');

% % % set(gca,'YScale','log');

% % % legend('boxoff');



%% To PLOT ALL THREE GRAPHS IN ONE FIGURE:



% % % % % figure(7)

% % % % % subplot(3,1,1)

% % % % % fplot(1000*Db, Ft_bm4, [0   0.005],'k')

% % % % % hold on

% % % % % fplot(1000*Db, Ft_bm5, [0   0.005],'b')

% % % % % fplot(1000*Db, Ft_bm6, [0   0.005],'r')

% % % % % legend( 'D_p=0.15 mm, \epsilon = 1 kW/m^3', ...

% % % % %     'D_p=0.27 mm, \epsilon = 1 kW/m^3', ...

% % % % %     'D_p=1.33 mm, \epsilon = 1 kW/m^3')

% % % % % xlabel('Bubble Diameter,D_b (mm)')

% % % % % %%% ylabel('Local Turbulence Force,F_t (N)')

% % % % % ylim([0.0000001  1])

% % % % % set(gca,'box','off');

% % % % % set(gca,'TickDir','out','FontSize',12);

% % % % % set(gca,'YScale','log');

% % % % % legend('boxoff');

% % % % % 

% % % % % subplot(3,1,2)

% % % % % fplot(1000*Dp, Ft_bm7, [0   0.002],'k')

% % % % % hold on

% % % % % fplot(1000*Dp, Ft_bm8, [0   0.002],'b')

% % % % % fplot(1000*Dp, Ft_bm9, [0   0.002],'r')

% % % % % legend('D_b=0.5 mm, \epsilon = 1 kW/m^3', ...

% % % % %     'D_b=2.5 mm, \epsilon = 1 kW/m^3', ...

% % % % %     'D_b=5.0 mm, \epsilon = 1 kW/m^3')

% % % % % xlabel('Sand Particle Diameter,D_p (mm)')

% % % % % ylabel('Local Turbulence Force,F_t (N)')

% % % % % ylim([0.00000000001  0.001])

% % % % % set(gca,'box','off');

% % % % % set(gca,'TickDir','out','FontSize',12);

% % % % % set(gca,'YScale','log');

% % % % % legend('boxoff');

% % % % % 

% % % % % subplot(3,1,3)

% % % % % fplot(ep, Ft_bm13, [1   100],'k')

% % % % % hold on

% % % % % fplot(ep, Ft_bm14, [1   100],'b')

% % % % % fplot(ep, Ft_bm15, [1   100],'r')

% % % % % legend('D_b=2.5 mm, D_p=0.15 mm', ...

% % % % %     'D_b=2.5 mm, D_p=0.27 mm', ...

% % % % %     'D_b=2.5 mm, D_p=1.33 mm')

% % % % % xlabel('Fluid Energy Dissipation,\epsilon (kW/m^3)')

% % % % % %%% ylabel('Local Turbulence Force,F_t (N)')

% % % % % ylim([0.0000001  1])

% % % % % set(gca,'box','off');

% % % % % set(gca,'TickDir','out','FontSize',12);

% % % % % set(gca,'YScale','log');

% % % % % legend('boxoff');